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Static wetting of a liquid drop on a solid 
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A variational treatment of sessile drop shape is provided. The surface energy and the driving 
force for drop spreading are also analysed. This analysis demonstrates that the Young 
equation does indeed give the equilibrium contact angle in a gravity-free environment. 

1. Introduction 
The wetting and spreading of liquids on solid surfaces 
is a key phenomenon in brazing and soldering and 
also in other joining processes such as adhesive bond- 
ing. It is also critical in the fabrication of composite 
materials. For these reasons wetting of solids by 
liquids has been extensively studied [1]. 

While the field of wetting and spreading of liquid 
metals on solid metals has been relatively mature for 
several decades, significant activity has occurred in the 
past decade concerning the brazing of ceramics [2] 
and the interactions between a liquid metal and a non- 
metallic solid (e.g. ceramics, intermetallics, or com- 
posites). The covalent and ionic nature of bonding in 
ceramics leads to solid surface energies that are usu- 
ally much lower than those of metals. Consequently, 
conventional brazing and soldering alloys do not wet 
ceramics and glasses. 

In "active metal" brazing a small quantity of a 
reactive metal such as Ti, Zr, Hf or V is added to 
a conventional brazing alloy. During brazing some of 
the reactive metal produces a thin surface layer on the 
ceramic (or composite). The free energy released by 
this exothermic reaction provides the driving force for 
wetting and spreading of the liquid on the ceramic. 
Although active metal brazing has been widely used, 
the state-of-the-art does not offer a sufficiently com- 
plete understanding of the phenomena to allow accu- 
rate theoretical predictions by the end user or the 
researcher. This forces the manufacturing engineer 
and the researcher to conduct a large number of ex- 
periments to develop a knowledge base sufficient to 
allow implementation of the process. 

As our investigation proceeded we generated addi- 
tional information concerning wetting and spreading 
in non-reactive systems including a re-evaluation of 
the classical Young-Dupre equation and the Bash- 
forth and Adams treatment. Historical development of 
the understanding of static wetting can be traced back 
to 1712 when Taylor measured the capillary rise of water 
between two glass plates [3]. Almost a century later, 
Young [4] presented his famous relation connecting 
surface tension and static contact angle. In 1883, 
Bashforth and Adams [5] published their work on the 
static shape of a sessile drop. Extensive reviews on static 

wetting have since been published by de Gennes [6], 
Naidich [1], Bikerman [7], and Johnson and Dettre [8]. 

Wettability of a liquid phase on a solid phase is 
defined by the contact angle between the liquid drop 
and a solid surface. "Non-wetting" occurs if an obtuse 
angle is obtained. "Partial wetting" refers to situations 
where finite acute contact angles are obtained, while 
"complete wetting" refers to a zero contact angle. 

At the static condition, the contact angle is a direct 
result of interracial force balance at the location where 
three phases meet (i.e. the "contact line"); In the 1950s 
the validity of the Young equation was challenged by 
Bikerman [7] because the derivation of the Young 
equation by a force balance did not consider the 
vertical component of the liquid surface tension. The 
most recent derivations of this equation for a sessile 
drop resulted from minimizing the total free energy of 
the system [9, i0]. 

2. The shape of a sessile drop 
The shape of a sessile drop was examined by Bash- 
forth and Adams [5] in 1883. By analysing the pres- 
sure balance inside a sessile drop using the Laplace 
equation, they determined that a second order differ- 
ential equation describes the shape of the sessile drop. 
However, in a gravity field this equation is solved 
numerically, and the solution requires a knowledge of 
the curvature of the drop at its summit. Robertson and 
Lehman [11] proposed a direct energy method to 
solve for the shape of a sessile drop by numerical 
integration. However, this treatment requires a know- 
ledge of the height and the base width of the drop. 
Further mathematical and computational develop- 
ment can be found in texts by Hartland and Hartley 
[12] and Finn [3]. 

3. Variational treatment of a sessile drop 
In previous treatments of sessile drop shape, 
the boundary conditions were not explicitly stated. 
A general belief is that the Young equation must be 
such a condition. The variational method is a power- 
ful tool used to analyse these kinds of static or dy- 
namic systems without requiring a detailed force 
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Figure 1 The coordinate system for a sessile drop assumed in the 
analysis. 

analysis. By minimizing the total energy or the 
entropy production of the system, the governing 
equations and the "natural" boundary conditions 
can be derived [13]. 

A sessile drop and the associated geometric defini- 
tions important in the analysis are shown in Fig. 1. 
Here H is the height of the drop, 0 the contact angle, 
x(0) the radius of the drop at its bottom, and T the 
radius of the circular solid plate underlying the liquid 
drop. 

The total energy of the system is composed of the 
surface energies of the solid, the liquid, the interfacial 
energy between the solid and the liquid, and the gravi- 
tational potential energy 

Etot = Eo + 7gx2(0)Ols 21_ r c ( T  2 _ x2(0))(3.vs 

+ 2~tOlvf:X(1 + x'2)l/2 dz 

+ plgrCfnox2zdz (1) 

Here the first term on the right-hand side is the inter- 
nal energy other than surface energy and gravitational 
potential energy, the second term is the interfacial 
energy between the drop and the solid, the third the 
solid surface energy, the fourth the surface energy of 
the liquid drop, and the last the gravitational poten- 
tial. The volume of the liquid drop is 

V = r: x 2 dz (2) 
o 

The goal of our use of the variational method is to 
minimize the total energy within the constant volume 
constraint. Therefore, the Lagrangian multiplier 2 is 
introduced as part of the goal function (G). 

G = Eto t q- )vV (3) 

For  a static drop, an arbitrary variation of the goal 
function G must equal zero, i.e. 

5G = 0 (4) 

The variation of the goal function may be caused by 
the variation of the radius of the drop at the bottom 
5x(0) or the height of the drop SH. The variational 
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analysis of Equation 1 results in 

8 G  = 21%((~1s - -  (Yvs)X(0)Sx(0)  

+ 2nC~,vx(H)(1 + x'2(H))l/ZSH 

+ 2~c~1v f : ( 1  + XI2(Z)) 1/2 5x dz 

d 
+ 2~%v x(1 + x'2) - 1/2 x' 8x dz 

+ plgrCx2(H)HSH + 919rc 2xSxzdz 

+ Xrcx2(H)SH + Xx 2xSxdz = 0 (5) 

where x'(O) and x'(H) are the derivatives o fx  at x = 0 
and x = H, respectively. The second integral in the 
above equation can be integrated in part and ex- 
panded as follows 

f~ t t'2 , d 8xdz 2~Crlv x(1 + x '2) / x d-z 2gCylvX(H) 

x (1 + x'Z(H)) - 1/2x'(H)Sx(H) 

- 27t%vX(0)(1 + x'2(0)) - 1/2xt(O)~x(O) 

f:d - -  21"C(Ylv ~ZZ.[-XX'(1 q- x '2) - l /a]~xdz  (6) 

Since 5x(0), 5H, and 5x are arbitrary variations, 
each term in Equations 5 and 6 must be zero. There- 
fore, the following conditions must be satisfied: 

I .  [ . . . 1 8 x ( O )  = O. 

2rtx(O){%s - (Yvs - (Ylv [1 + x '2 (O) l -1 /2x ' (O)}  = 0 

(7) 

Since x(O) # O, and cos@ = - x'(O)[1 + x'2(O)1-1/2, 
we have 

c~ - csv~ + %vcos0 = 0 (8) 

One immediately realizes that this is the Young 
equation which serves as one of the natural boundary 
conditions in the analysis. 

2. [ . . . ] 8 H  = O. 

2x%~x(H)[1 + x'2(H)] t/z + 919~x2(H)H 

+ X~zx2(H) = 0 (9) 

This leads to another natural boundary condition 

x(H) = 0 (10) 
3. [ . . . ] ~ x ( H )  = 0. 

This also leads to Equation 10. 

4. [ . . . ] 3 x  = O. 

2~zcrlv[1 + X'2] 1/2 "q- 27tplgxz + 2rcXx 

-- 2rcCylvd[xx'(1 + x'2) -a/2] = 0 (11) 
Clz 



This equation leads to a second order differential 
equation 

X tl 

O'Iv ['1 -}-X'2] 3/2 
(Ylv 

Xt2 "] 1/2 --  gplz - )~ = 0 X[-1 + 

(12) 

We can prove that this is equivalent to the Bash- 
forth-Adams type sessile drop equation by applying 
it to the summit of the sessile drop (z = H). Thus, 
one has 

2Chv 
- g p ~ H  + X (13) 

R ( H )  

where R ( H )  is the radius of the curvature at the 
summit of the drop. This radius was also included in 
the Bashforth-Adams analysis. If we substitute R ( H )  
for X using Equation 13 and invoke the coordinate 
system of Bashforth and Adams, Equation 12 will be 
identical to the Bashforth-Adams equation. A further 
examination of the physical meaning of the Lagran- 
gian multiplier reveals that 2 is in fact the internal 
pressure of the drop at its bottom. This conclusion can 
be reached by applying Equation (12) at the bottom of 
the drop where z = 0 

X = - Glv + (14) 

Here R1 (0) and R2 (0) are the principal radii of curva- 
ture at the contact line of the drop. From the Laplace 
equation (see e.g. Finn [-3]), the physical meaning of 
)~ is indeed the pressure difference between the inside 
and the outside of the drop at its bottom. If we take 
the pressure reference point to be inside the bottom of 
the drop, )~ is then the external pressure. 

4. Pressure exerted by the drop 
against its base 

The hydrostatic pressure inside the liquid drop 
depends only on its height. Inside the drop at any 
given height, the pressure will be the same regardless 
of its distance from the central axis. This is also 
true for all points at the bottom of the drop. Therefore 
the pressure against the base is uniformly distributed 
and can be calculated by the total force exerted by 
the weight of the drop divided by the contact area 
(Fig. 2) 

p l g V  
p(bottom) - rex(0) 2 (15) 

On the other hand, pressure can also be calculated by 
the summation of the pressure inside the drop Equa- 
tions 13 or 14 with reference to the constant external 
pressure and the pressur e due to the surface tension at 
the contact line. Therefore 

p(bottom) = _ s _ 2~x(0)~l, sin0 
nx(0)2 (16) 

By equating the right hand terms in Equations 15 
and 16, and substituting Equations 13 and 14 for 2, 
we can relate the volume of the drop to measurable 
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Figure 2 The pressure at the bottom of a sessile drop. 

terms 

g - rcx(0)Cyiv ( 2 p i g  e(~/) 2sin0x(0) + PlgH~ (17) 
(Jlv ,/ 

V gx(O)Ulv ( 1 1 2sinO~ (18) 
= Pl-----~ ~ + R2(0) ~ J 

Equation 17 is the same as the volume expression 
obtained by Bashforth and Adams using volume in- 
tegration. 

5. The Young equation 
The Young equation (Equation 8) obtained in this 
analysis appears as one of the natural boundary con- 
ditions during the total energy minimization. How- 
ever, since the virtual displacement 5x(0) in the above 
analysis is not a true independent variable due to the 
continuity requirement of the entire drop profile 
(i.e. the variable x must be equal to x(0) at z = 0), the 
Young relation thus obtained is not guaranteed to be 
consistent with the requirement imposed by Equa- 
tion 12 for the entire drop profile. In the following 
analysis we will demonstrate that the Young equation 
is indeed followed by a sessile drop in a gravity-free 
environment. However in a separate analysis [14] we 
demonstrate that this equation breaks down in the 
presence of gravity. 

6. Sessile drop in a gravity-free 
environment 

In a gravity-free environment prediction of the shape 
of a sessile drop is readily solvable. The mathematical 
equivalence for the gravity-free environment is true 
not only for 9 = 0, but also when the drop has the 
same density as the gas phase. A fairly good example is 
a soap bubble with an extremely thin wall. In these 
situations the third term in Equation 12 is zero. 

In a gravity-free environment, the only cause of 
internal drop pressure is surface curvature. Under 
equilibrium conditions, the internal pressure is con- 
stant regardless of the location. Therefore, the surface 
curvature of the drop must be the same over the entire 
surface, and a spherical cap is the only geometrical 
shape that satisfies this requirement. However, at the 
base of the drop the pressure cannot be counter-bal- 
anced by the curvature, but rather by the tension at 
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Figure 3 The dependence of the normalized surface energy (Equa- 
tion 23) on the contact angle under different surface energy combi- 
nations which yield Young contact angles of 30, 90 and 150 degrees, 
respectively. 
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Figure 4 The dependence of the normalized driving force (Equa- 
tion 24) on the contact angle under different surface energy combi- 
nations which yield Young contact angles of 30, 90 and 150 degrees, 
respectively. 

the contact line. This requirement leads to a physical 
relationship between the diameter of the base contact 
area, the contact angle, and the curvature of the 
spherical cap 

2Chv 2rex (0) chv sin 0 
= (19) 

R TCX (0) 2 

Here R is the radius of the spherical cap, Cylv the 
surface tension of the liquid drop, and x(0) the radius 
of the contact area. The volume of the spherical cap is 

Also, a geometric relationship exists between the 
height and the radius of the base contact area 

x (O )  = ( 2 R H  - -  H2) t/2 (21) 

From Equations 19-21 and the Young equation one 
can solve for R, x(0), H and 0. There are four equations 
for four unknowns and the problem is well defined. 

The total surface energy of this system is due to the 
spherical surface of the drop and the contact area 
between the drop and the solid base 

E(surf) = 2 r t C X l v R H  + (~1s - Osv)nX(0) 2 (22) 

We use these equations to test the Young equation to  

see if this contact angle gives the minimum system 
energy in a gravity-free environment. Using Equa- 
tion 8, Equation 22 can be written as 

E(surf) 2 R H  - ( 2 R H  - H2)c0sOv 
71 ; (Y lv  V 2 / 3  V 2 / 3  

(23) 

where V is the volume of the drop and | is the 
Young contact angle. The left hand term is a nor- 
malized surface energy independent of volume. We 
define this term as the normalized surface energy 
(NSE). Fig. 3 shows the NSE as a function of the 
contact angle (and R and H according to Equations 19 
and 21) for three different surface and interface energy 
combinations. These correspond to three different 
Young contact angles (| = 30, 90 and 150 degrees). 
This figure indeed shows that the Young contact angle 
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is the equilibrium contact angle, i.e. at the Young 
contact angle the NSE reaches its minimum. For 
higher contact angles ( >  150degrees) the energy 
reduction from the 180 degree configuration to the 
equilibrium configuration is not very significant. This 
indicates that greater difficulty in involved in accur- 
ately measuring these contact angles. 

Fig. 4 demonstrates the thermodynamic driving force 
acting at the base of the drop as a function of contact 
angle. This driving force is defined as the negative 
derivative of the NSE with respect to the normalized 
radius ( x ( O ) / V  1/3) of the base contact area. Therefore, 
this force characterizes the force that acts parallel to  

the basal plane to push or pull the liquid drop 

Normalized Driving Force (NDF) = 

5 [ E(surf) 1 
ex(0) L  ,lv v 1/3 (24) 

Here the 1/3 power of V reflects the normalization of 
x(0) against the cube root of the volume. Again, Fig. 4 
shows that this force is zero at the equilibrium contact 
angle and changes sign at the Young contact angle. 
This reflects the pulling action exerted on the liquid to  

spread the drop when the contact angle is smaller than 
the Young contact angle. A pushing action acts to 
contract the drop when the contact angle is greater 
than the Young contact angle. For a contact angle of 
180 degrees, no force exists to spread the drop even 
though the Young contact angle is much smaller than 
180 degrees. This indicates that a metastable state 
exists. Indeed, a local maximal NSE is reached at this 
point (see Fig. 3). Theoretically speaking, in a gravity- 
free environment there is no attainable thermo- 
dynamic driving force available to spread a spherical 
liquid drop over a solid plate. A gravity field, or other 
equivalent accelerating action (vibration, etc.) is 
necessary to initiate the spreading. 

7. Effect of surface roughness on 
static wet t ing behaviour 

If the solid surface is not perfectly smooth, the static 
contact angle is different from the Young contact 



Figure 5 A sessile drop on a hypothetical rough solid surface, 
where a sine wave surface roughness is assumed, with Yo as the 
amplitude and 2 as the wave length. 
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angle predicted by assuming a smooth surface. Wenzel 
[15] first recognized a "roughness factor," and noted 
that the contact angle measured on a rough surface 
was different from that on a smooth surface. He at- 
tributed this difference to the actual surface area on 
a rough surface being greater than the geometric sur- 
face area and defined the ratio between the two surfa- 
ces as the roughness factor. Johnson and Dettre [16] 
later developed a detailed analysis of the roughness 
effect and related surface roughness to the contact 
angle hysteresis. 

For  a rough surface, the contact area between liquid 
and solid would look like the situation described in 
Fig. 5. Here the surface roughness is approximated as 
a sine function with Y0 being the amplitude and X the 
wavelength. The liquM-solid contact at the interface 
exhibits some local detachment and the curvature at 
point B is less than that at point A. The pressure 
difference resulting from the curvature difference is 
then balanced by the vertical component of the liquid 
surface tension at the local contact line. However, if we 
assume that the amplitude (Yo) is small and ignore 
both the detailed force balance at the local contact 
lines and local detachment, Equation 23 can be rewrit- 
ten as 

where 

A = 

E(surf) 2 R H  - Acos Ov/rc 

7~O'lv V 2/3 V 2/3 
(25) 

(26) 

is the contact area between the solid and liquid. Here 
the assumption is that the sinusoidally-shaped surface 
roughness has a circular symmetry about the centre of 
the liquid drop. Fig. 6 shows a calculation of the effect 
of the surface roughness on the static wetting for 
| = 150. A parameter �9 is used in the calculation, 
which is the ratio of the amplitude (Yo) and the 
wavelength (X) of the roughness. We see that for high 

values, the static contact angle corresponding to the 
minimum system energy shifts toward higher angles. 
This agrees with the observations of Hitchcock et al. 

[17], who found that for most systems the static con- 
tact angle increases with increasing roughness para- 
meter (Ra/Xa) where Ra is the amplitude and Xa the 

Figure 6 The dependence of the normalized surface energy (Equa- 
tion 24) on the contact angle using different surface roughness ~. 
The Young contact angle is assumed to be 150 degrees. 
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Figure 7 The dependence of the normalized surface energy (Equa- 
tion 24) on the contact angle using different surface roughness ~. 
The Young contact angle is assumed to be 90 degrees. 
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Figure 8 The dependence of the normalized surface energy Equa- 
tion (24) on the contact angle using different surface roughness ~. 
The Young contact angle is assumed to be 30 degrees. 

wavelength in their nomenclature. The physical 
meaning for this is that the effective surface area 
increases as the roughness increases, which can be 
realized f rom Equation 25. From Equation 25 the 
effective surface area modulates the cos |  term, 
which in turn results in a shift of the static contact 
angle. Since cos |  changes sign at | = 90, the 
surface roughness will not change the wetting charac- 
teristics (Fig. 7) but will enhance them (Fig. 8). 
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In other words, a system showing good wetting 
on a smooth surface will wet better on a rough 
surface of that same solid. Conversely a system 
showing poor  wetting on a smooth surface will be 
even more constricted by a rough surface. This 
explains for example why morning dew  forms a 
better sphere on a hair-covered leaf than on a smooth 
one. 

8. Conclusions 
1. A variational treatment on the equilibrium shape of 
a sessile drop is provided. 
2. The Young equation appears as one of the "nat- 
ural" boundary conditions for the minimization of 
system internal energy. 
3. The spreading of a sessile drop in a gravity-free 
environment is fully analysed as a function of shape, 
energy, and driving force. 
4. The analysis demonstrates that the Young con- 
tact angle is indeed the equilibrium contact angle 
in a gravity-free environment. Here the system 
energy reaches a minimum and the driving force is 
zero. 
5. At a metastable point (a contact angle of 180 de- 
grees) the energy reaches a local maximum, and the 
driving force is also zero. 
6. Surface roughness does not change the wetting 
characteristics of a system but instead enhances 
them. 
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